cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382571 Decimal expansion of Sum_{p prime} 1/((p - 1)*(p + 1)^2).

This page as a plain text file.
%I A382571 #9 Apr 02 2025 06:36:55
%S A382571 1,5,3,6,0,7,9,9,6,7,5,0,2,0,2,9,3,8,7,4,3,8,9,1,3,2,6,3,1,1,9,9,6,3,
%T A382571 0,5,2,4,7,0,6,3,3,6,2,7,9,9,9,3,3,2,2,6,6,3,8,4,6,0,5,9,1,7,8,7,8,7,
%U A382571 3,7,2,6,2,8,8,4,0,8,2,1,2,3,7,6,1,3,4,9,7,8,9,5,2,1,9,1,2,0,8,1,4,0
%N A382571 Decimal expansion of Sum_{p prime} 1/((p - 1)*(p + 1)^2).
%H A382571 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {0,1,2}.
%F A382571 Equals A136141/4 + A179119/4 - A382554/2.
%F A382571 Equals Sum_{k>=2} (k-1) * (P(2*k-1) - P(2*k)), where P is the prime zeta function. - _Amiram Eldar_, Apr 02 2025
%e A382571 0.153607996750202938743891326311996305247063362799933226638460591787...
%o A382571 (PARI) sumeulerrat(1/((p-1)*(p+1)^2)) \\ _Amiram Eldar_, Apr 02 2025
%Y A382571 Cf. A136141, A179119, A382554.
%K A382571 nonn,cons
%O A382571 0,2
%A A382571 _Artur Jasinski_, Mar 31 2025