cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382573 Decimal expansion of Sum_{p prime} 1/((p - 1)^3*(p + 1)^2).

This page as a plain text file.
%I A382573 #11 Apr 02 2025 06:37:55
%S A382573 1,1,9,4,4,1,3,4,9,3,5,4,2,8,6,7,2,0,5,4,9,9,1,3,2,5,6,5,1,0,7,5,7,6,
%T A382573 4,6,4,6,0,9,3,2,1,2,8,9,8,2,0,8,9,0,6,8,8,5,8,9,2,8,1,7,8,4,7,6,6,8,
%U A382573 4,3,0,0,3,1,0,7,4,2,2,6,4,8,7,4,1,5,7,6,4,9,2,6,9,1,4,3,0,0,0,2,7,2
%N A382573 Decimal expansion of Sum_{p prime} 1/((p - 1)^3*(p + 1)^2).
%H A382573 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {0,3,2}.
%F A382573 Equals 3*A136141/16 - A086242/4 + A380840/4 + 3*A179119/16 - A382554/8.
%F A382573 Equals Sum_{k>=3} ((k-2)*(k-1)/2) * (P(2*k-1) + P(2*k)), where P is the prime zeta function. - _Amiram Eldar_, Apr 02 2025
%e A382573 0.119441349354286720549913256510757646460932...
%o A382573 (PARI) sumeulerrat(1/((p-1)^3*(p+1)^2)) \\ _Amiram Eldar_, Apr 02 2025
%Y A382573 Cf. A086242, A136141, A179119, A380840, A382554.
%K A382573 nonn,cons
%O A382573 0,3
%A A382573 _Artur Jasinski_, Mar 31 2025