cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382577 Decimal expansion of Sum_{p prime} 1/(p*(p + 1)^3).

This page as a plain text file.
%I A382577 #7 Apr 02 2025 06:38:49
%S A382577 0,2,5,0,3,6,3,2,5,6,2,0,4,7,3,5,6,1,2,1,5,7,4,7,6,1,7,9,1,1,3,0,2,4,
%T A382577 6,8,2,8,6,5,5,9,0,2,2,9,2,3,6,1,7,4,1,4,5,7,7,2,1,7,0,8,1,9,7,3,4,8,
%U A382577 8,4,9,2,6,6,8,6,5,0,4,4,2,1,6,1,9,4,3,2,4,2,4,4,5,1,5,4,6,2,2,7,0,5,7,7
%N A382577 Decimal expansion of Sum_{p prime} 1/(p*(p + 1)^3).
%H A382577 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {1,0,3}.
%F A382577 Equals A179119 - A382554 - A382555.
%F A382577 Equals Sum_{k>=4} (-1)^k * ((k-3)(k-2)/2) * P(k), where P is the prime zeta function. - _Amiram Eldar_, Apr 02 2025
%e A382577 0.025036325620473561215747617911302468286559022923617414577217081973488...
%o A382577 (PARI) sumeulerrat(1/(p*(p+1)^3)) \\ _Amiram Eldar_, Apr 02 2025
%Y A382577 Cf. A179119, A382554, A382555.
%K A382577 nonn,cons
%O A382577 0,2
%A A382577 _Artur Jasinski_, Mar 31 2025