cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382582 Decimal expansion of Sum_{p prime} 1/((p - 1)*p^2*(p + 1)).

This page as a plain text file.
%I A382582 #6 Apr 01 2025 20:22:56
%S A382582 0,9,9,4,4,5,8,7,7,6,1,5,9,3,3,6,8,5,9,3,3,1,8,7,6,5,9,1,3,9,0,9,5,6,
%T A382582 4,3,9,5,8,2,6,9,0,3,4,5,3,8,7,3,5,8,3,0,4,9,4,1,9,8,4,0,3,7,0,8,4,0,
%U A382582 0,5,7,0,2,7,7,1,5,9,7,9,6,6,2,8,7,9,3,4,3,8,8,1,3,3,7,1,1,0,2,5,0
%N A382582 Decimal expansion of Sum_{p prime} 1/((p - 1)*p^2*(p + 1)).
%H A382582 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {2,1,1}.
%F A382582 Equals -A085548 + A136141/2 + A179119/2.
%F A382582 Equals Sum_{k>=2} P(2*k), where P is the prime zeta function. - _Amiram Eldar_, Apr 01 2025
%e A382582 0.099445877615933685933187659139095643958269034538735830494198403708400570277159...
%o A382582 (PARI) sumeulerrat(1/((p-1)*p^2*(p+1))) \\ _Amiram Eldar_, Apr 01 2025
%Y A382582 Cf. A085548, A136141, A179119.
%K A382582 nonn,cons
%O A382582 0,2
%A A382582 _Artur Jasinski_, Mar 31 2025