cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382591 Decimal expansion of Sum_{p prime} 1/((p - 1)*p*(p + 1)^2).

This page as a plain text file.
%I A382591 #8 Apr 01 2025 08:59:36
%S A382591 0,6,7,8,5,5,3,7,4,6,4,2,5,9,3,0,0,4,6,8,0,7,4,5,1,0,9,5,7,2,6,0,2,5,
%T A382591 1,2,2,4,0,1,7,7,5,9,5,5,0,4,6,2,4,5,6,9,4,4,1,9,2,8,1,4,1,5,0,9,2,6,
%U A382591 9,7,0,4,5,5,9,7,5,4,5,1,4,3,7,9,9,1,2,7,9,6,7,0,2,8,5,1,6,4,9,4,6,2,9,6
%N A382591 Decimal expansion of Sum_{p prime} 1/((p - 1)*p*(p + 1)^2).
%H A382591 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {1,1,2}.
%F A382591 Equals A136141/4 - 3*A179119/4 + A382554/2.
%F A382591 Equals Sum_{k>=2} (k-1) * (P(2*k) - P(2*k+1)), where P is the prime zeta function. - _Amiram Eldar_, Apr 01 2025
%e A382591 0.06785537464259300468074510957260251224017759550462...
%o A382591 (PARI) sumeulerrat(1/((p-1)*p*(p+1)^2)) \\ _Amiram Eldar_, Apr 01 2025
%Y A382591 Cf. A136141, A179119, A382554.
%K A382591 nonn,cons
%O A382591 0,2
%A A382591 _Artur Jasinski_, Mar 31 2025