cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382592 Decimal expansion of Sum_{p prime} 1/((p - 1)*p^2*(p + 1)^2).

This page as a plain text file.
%I A382592 #9 Apr 01 2025 09:00:30
%S A382592 0,3,1,5,9,0,5,0,2,9,7,3,3,4,0,6,8,1,2,5,2,4,4,2,5,4,9,5,6,6,4,9,3,1,
%T A382592 3,1,7,1,8,0,9,1,4,3,9,0,3,4,1,1,1,2,6,1,0,5,2,2,7,0,2,6,2,1,9,9,1,3,
%U A382592 0,8,6,5,7,1,7,4,0,5,2,8,2,2,4,8,8,8,0,6,4,2,1,1,0,5,1,9,4,5,3,0,3,9,2,8
%N A382592 Decimal expansion of Sum_{p prime} 1/((p - 1)*p^2*(p + 1)^2).
%H A382592 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {2,1,2}.
%F A382592 Equals -A085548 + A136141/4 + 5*A179119/4 - A382554/2.
%F A382592 Equals Sum_{k>=3} (k-2) * (P(2*k-1) - P(2*k)), where P is the prime zeta function. - _Amiram Eldar_, Apr 01 2025
%e A382592 0.03159050297334068125244254956649313171809143903411...
%o A382592 (PARI) sumeulerrat(1/((p-1)*p^2*(p+1)^2)) \\ _Amiram Eldar_, Apr 01 2025
%Y A382592 Cf. A085548, A136141, A179119, A382554.
%K A382592 nonn,cons
%O A382592 0,2
%A A382592 _Artur Jasinski_, Mar 31 2025