cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382595 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p^2*(p + 1)^2).

This page as a plain text file.
%I A382595 #9 Apr 01 2025 09:03:27
%S A382595 0,2,9,5,9,3,0,4,8,2,8,1,8,7,3,8,7,0,5,6,4,2,4,7,2,0,4,3,4,2,6,8,0,2,
%T A382595 3,3,6,8,0,2,2,4,1,7,9,6,6,0,4,6,9,8,5,7,8,0,6,2,1,4,3,0,0,8,5,5,5,8,
%U A382595 0,0,9,5,4,5,3,7,5,7,2,4,3,2,7,1,1,7,8,2,3,9,0,2,2,6,1,0,8,3,1,8,7,7,9
%N A382595 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p^2*(p + 1)^2).
%H A382595 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {2,2,2}.
%F A382595 Equals A085548 - 3*A136141/4 + A086242/4 - 3*A179119/4 + A382554/4.
%F A382595 Equals Sum_{k>=3} (k-2) * P(2*k), where P is the prime zeta function. - _Amiram Eldar_, Apr 01 2025
%e A382595 0.02959304828187387056424720434268023368022417966046...
%o A382595 (PARI) sumeulerrat(1/((p-1)^2*p^2*(p+1)^2)) \\ _Amiram Eldar_, Apr 01 2025
%Y A382595 Cf. A085548, A086242, A136141, A179119, A382554.
%K A382595 nonn,cons
%O A382595 0,2
%A A382595 _Artur Jasinski_, Mar 31 2025