cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382596 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p^3*(p + 1)^2).

This page as a plain text file.
%I A382596 #9 Apr 01 2025 09:03:23
%S A382596 0,1,4,4,8,2,8,1,9,1,6,1,8,6,2,1,4,4,8,1,5,1,6,6,6,3,2,6,9,0,2,8,1,2,
%T A382596 4,8,8,8,6,4,8,6,7,8,2,3,1,6,1,7,2,6,1,2,6,6,6,7,6,7,8,4,6,4,5,9,1,9,
%U A382596 9,1,1,9,8,5,1,1,2,9,3,8,6,3,9,9,6,4,5,3,0,6,0,1,5,0,5,9,9,8,7,8,6,0,1,2
%N A382596 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p^3*(p + 1)^2).
%H A382596 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {3,2,2}.
%F A382596 Equals A085541 - A136141 + A086242/4 + A179119 - A382554/4.
%F A382596 Equals Sum_{k>=3} (k-2) * P(2*k+1), where P is the prime zeta function. - _Amiram Eldar_, Apr 01 2025
%e A382596 0.01448281916186214481516663269028124888648678231617...
%o A382596 (PARI) sumeulerrat(1/((p-1)^2*p^3*(p+1)^2)) \\ _Amiram Eldar_, Apr 01 2025
%Y A382596 Cf. A085541, A086242, A136141, A179119, A382554.
%K A382596 nonn,cons
%O A382596 0,3
%A A382596 _Artur Jasinski_, Mar 31 2025