cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382599 Decimal expansion of Sum_{p prime} 1/((p - 1)^3*p^2*(p + 1)^2).

This page as a plain text file.
%I A382599 #8 Apr 01 2025 09:36:20
%S A382599 0,2,8,6,6,4,7,4,9,8,1,7,1,9,8,2,9,8,1,6,8,9,7,6,2,9,8,2,5,8,9,0,4,0,
%T A382599 4,7,3,8,2,3,9,2,3,3,0,6,2,7,0,3,8,0,9,2,1,9,4,2,2,9,3,1,4,5,6,6,3,9,
%U A382599 3,2,4,3,6,8,5,8,2,2,4,9,6,0,8,2,9,2,0,5,2,9,1,1,3,4,0,1,8,8,3,4
%N A382599 Decimal expansion of Sum_{p prime} 1/((p - 1)^3*p^2*(p + 1)^2).
%H A382599 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {2,3,2}.
%F A382599 Equals -A085548 + 23*A136141/16 - 3*A086242/4 + A380840/4 + 7*A179119/16 - A382554/8.
%F A382599 Equals Sum_{k>=4} ((k-3)*(k-2)/2)*(P(2*k-1) + P(2*k)), where P is the prime zeta function. - _Amiram Eldar_, Apr 01 2025
%e A382599 0.028664749817198298168976298258904047...
%o A382599 (PARI) sumeulerrat(1/((p-1)^3*p^2*(p+1)^2)) \\ _Amiram Eldar_, Apr 01 2025
%Y A382599 Cf. A085548, A086242, A136141, A179119, A380840, A382554.
%K A382599 nonn,cons
%O A382599 0,2
%A A382599 _Artur Jasinski_, Mar 31 2025