cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382604 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p*(p + 1)^3).

This page as a plain text file.
%I A382604 #8 Apr 01 2025 08:34:08
%S A382604 0,1,9,8,8,7,0,1,3,3,7,2,0,7,7,4,1,5,0,4,2,0,9,5,5,0,4,0,3,9,2,6,1,6,
%T A382604 7,1,7,1,0,7,5,3,1,6,6,2,0,2,0,3,8,7,7,0,7,1,3,0,6,4,5,1,6,6,4,3,4,1,
%U A382604 0,1,7,7,6,1,2,8,0,5,2,4,4,7,0,5,5,3,7,0,5,2,0,0,2,1,4,0,8,8
%N A382604 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p*(p + 1)^3).
%H A382604 <a href="/wiki/Index_to_constants#Start_of_section_P">Index to constants which are prime zeta sums</a> {1,2,3}.
%F A382604 Equals -5*A136141/16 + A086242/8 + 11*A179119/16 - A382554/2 - A382555/4.
%F A382604 Equals Sum_{k>=3} ((k-2)*(k-1)/2)*(P(2*k) - P(2*k+1)), where P is the prime zeta function. - _Amiram Eldar_, Apr 01 2025
%e A382604 0.01988701337207741504209550403926167171075316620203877071...
%o A382604 (PARI) sumeulerrat(1/((p-1)^2*p*(p+1)^3)) \\ _Amiram Eldar_, Apr 01 2025
%Y A382604 Cf. A086242, A136141, A179119, A382554, A382555.
%K A382604 nonn,cons
%O A382604 0,3
%A A382604 _Artur Jasinski_, Mar 31 2025