This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382607 #28 May 06 2025 16:15:10 %S A382607 1,2,3,7,4,8,13,9,14,19,18,24,25,20,30,29,31,35,36,41,40,34,46,42,47, %T A382607 45,51,52,57,56,58,62,63,68,67,69,73,74,79,78,84,80,85,83,89,90,95,94, %U A382607 96,100,101,91,106,105,107,111,112,117,116,122,118,123,128,127 %N A382607 Natural numbers ordered by the probability (lowest to highest) to occur in the sum of repeated rolls of a fair 6-sided die. %C A382607 The asymptotic probability for large n is 2/7 since the average roll of a die is 7/2. %C A382607 Only terms with probability < 2/7 occur. - _Michael S. Branicky_, Apr 01 2025 %C A382607 Of any six consecutive integers, at least one is present and gives a maximum in the sequence (i.e., all terms preceding it are smaller). - _Javier Múgica_, May 01 2025 %H A382607 Alois P. Heinz, <a href="/A382607/b382607.txt">Table of n, a(n) for n = 1..10000</a> %e A382607 The probability of achieving a '6' in n>=6 rolls is 1/6 + 5/36 + 10/216 + 10/1296 + 5/7776 + 1/46656 which is about 36.02%. %e A382607 The probability of achieving a '1' is just 1/6 (about 16.67%). 1 is the lowest of all, so a(1)=1. %o A382607 (Python) %o A382607 from fractions import Fraction %o A382607 from math import factorial, prod %o A382607 from itertools import count, islice %o A382607 from sympy.utilities.iterables import partitions %o A382607 def prob(n): return sum(factorial(N:=sum(p.values()))//prod(factorial(v) for v in p.values())*Fraction(1, 6**N) for p in partitions(n, k=6)) %o A382607 def agen(): # generator of terms %o A382607 n, vdict = 1, dict() %o A382607 for k in count(1): %o A382607 vdict[prob(k)] = k %o A382607 if k%6 == 0: %o A382607 s = [vdict[v] for v in sorted(vdict) if v < Fraction(2, 7)] %o A382607 yield from (s[i-1] for i in range(n, len(s)-1)) %o A382607 n = len(s) - 1 %o A382607 print(list(islice(agen(), 20))) # _Michael S. Branicky_, Apr 01 2025 %Y A382607 Complement of A382606. Cf. A365443. %K A382607 nonn %O A382607 1,2 %A A382607 _Sergio Pimentel_, Mar 31 2025