cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382609 Semiperimeter of the unique primitive Pythagorean triple whose inradius is A000045(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A382609 #7 Apr 06 2025 14:48:50
%S A382609 1,6,6,15,28,66,153,378,946,2415,6216,16110,41905,109278,285390,
%T A382609 746031,1951300,5105610,13361865,34974066,91550746,239662671,
%U A382609 627412176,1642533270,4300121953,11257726326,29472885078,77160650703,202008616876,528864471570,1384583619321
%N A382609 Semiperimeter of the unique primitive Pythagorean triple whose inradius is A000045(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%D A382609 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.
%H A382609 Miguel-Ángel Pérez García-Ortega, <a href="/A382609/a382609.pdf">El Libro de las Ternas Pitagóricas</a>
%F A382609 a(n) = (A382608(n,1) + A382608(n,2) + A382608(n,3))/2.
%F A382609 a(n) = (Fibonacci(n) + 1)*(2*Fibonacci(n) + 1).
%e A382609 For n=2, the short leg is A382608(2,1) = 3, the long leg is A382608(2,2) = 4 and the hypotenuse is A382608(2,3) = 5 so the semiperimeter is then a(2) = (3 + 4 + 5)/2 = 6.
%t A382609 a=Table[Fibonacci[n],{n,0,30}];Apply[Join,Map[{(#+1)(2#+1)}&,a]]
%Y A382609 Cf. A000045, A382608, A382610.
%K A382609 nonn,easy
%O A382609 0,2
%A A382609 _Miguel-Ángel Pérez García-Ortega_, Mar 31 2025