This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382612 #9 Apr 15 2025 23:37:44 %S A382612 0,1,24,189,832,2625,6696,14749,29184,53217,91000,147741,229824, %T A382612 344929,502152,712125,987136,1341249,1790424,2352637,3048000,3898881, %U A382612 4930024,6168669,7644672,9390625,11441976,13837149,16617664,19828257,23517000,27735421,32538624,37985409,44138392,51064125,58833216,67520449,77204904,87970077,99904000,113099361,127653624 %N A382612 a(n) = n^3 * (n^2 - n + 1). %C A382612 Product of the entries in the corners of an n X n square array with elements 1..n^2 listed in increasing order by rows (see example). %H A382612 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A382612 G.f.: x*(1+18*x+60*x^2+38*x^3+3*x^4)/(x-1)^6. - _R. J. Mathar_, Apr 02 2025 %F A382612 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - _Wesley Ivan Hurt_, Apr 15 2025 %e A382612 [1 2 3 4 5] %e A382612 [1 2 3 4] [6 7 8 9 10] %e A382612 [1 2 3] [5 6 7 8] [11 12 13 14 15] %e A382612 [1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20] %e A382612 [1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25] %e A382612 ------------------------------------------------------------------------ %e A382612 n 1 2 3 4 5 %e A382612 ------------------------------------------------------------------------ %e A382612 1 1*2*3*4 1*3*7*9 1*4*13*16 1*5*21*25 %e A382612 ------------------------------------------------------------------------ %e A382612 a(n) 1 24 189 832 2625 %t A382612 Table[n^3 (n^2 - n + 1), {n, 0, 60}] %o A382612 (Magma) [n^3*(n^2 - n + 1) : n in [0..50]]; // _Wesley Ivan Hurt_, Apr 15 2025 %Y A382612 Cf. A088020 (product of all entries). %Y A382612 Cf. A382532 (product along main antidiagonal). %Y A382612 Cf. A382620 (product along border). %K A382612 easy,nonn %O A382612 0,3 %A A382612 _Wesley Ivan Hurt_, Mar 31 2025