cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382620 a(n) = n^(2*n-4) * (n!)^2 * (n^2)! * Pochhammer(1+1/n, n-1) / ((n^2-n+1) * (n^2-n)!).

This page as a plain text file.
%I A382620 #7 Apr 06 2025 19:38:00
%S A382620 1,24,72576,4528742400,2423748096000000,6787796602812825600000,
%T A382620 72775351435975459999580160000,2410818176289650624878632291532800000,
%U A382620 211160088068074747246458003999015567360000000,43450506124990177923906533235556142284800000000000000,19145311724106592586650799558102522667408683773722624000000000
%N A382620 a(n) = n^(2*n-4) * (n!)^2 * (n^2)! * Pochhammer(1+1/n, n-1) / ((n^2-n+1) * (n^2-n)!).
%C A382620 Product of the entries on the border of an n X n square array with elements 1..n^2 listed in increasing order by rows.
%F A382620 a(n) ~ 2^(3/2) * Pi^(3/2) * n^(7*n - 11/2) / exp(3*n + 1/2). - _Vaclav Kotesovec_, Apr 01 2025
%e A382620                                                         [1   2  3  4  5]
%e A382620                                         [1   2  3  4]   [6   7  8  9 10]
%e A382620                               [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
%e A382620                      [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
%e A382620              [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
%e A382620   ------------------------------------------------------------------------
%e A382620     n         1        2         3            4                 5
%e A382620   ------------------------------------------------------------------------
%e A382620     a(n)      1        24      72576      4528742400    2423748096000000
%t A382620 Table[n^(2n - 4)*(n!)^2*(n^2)!*Pochhammer[1 + 1/n, n - 1]/((n^2 - n + 1)*(n^2 - n)!), {n, 12}]
%Y A382620 Cf. A382532, A382612.
%K A382620 nonn
%O A382620 1,2
%A A382620 _Wesley Ivan Hurt_, Apr 01 2025