A382638 Numbers k for which the repeating part with leading 0's of 1/k in decimal is a palindrome and longer than one digit.
1616, 14208, 16160, 17472, 142080, 161600, 174720, 454656, 511488, 838656, 1363968, 1420800, 1578125, 1616000, 1747200, 1818624, 1900992, 4091904, 4265625, 4546560, 4734375, 5114880, 8183808, 8386560, 13639680, 14208000, 15781250, 16160000, 17472000, 18186240, 19009920
Offset: 1
Examples
1616 is a term, because 1/1616 = 0.0006188118811881188118811881188118811881... = 0.0006(1881), where the repeating period 1881 is a palindrome longer than a single digit. 511488 is a term, because 1/511488 = 1.955080080080080080080080080080080080... E-6 = 1.955(080) E-6, where the repeating period O80 is a palindrome longer than a single digit. 11 is not a term, because 1/11 = 0.09090909090909090909090909090909090909... = 0,(09), where the repeating period 09 is not a palindrome . 101 is not a term, because 1/101 = 0.0099009900990099009900990099009900990099 = 0,(0099), where the repeating period 0099 is not a palindrome. Term 4091904 is itself a palindrome. - _Bert Dobbelaere_, Apr 27 2025
Programs
-
Mathematica
p[{t_List}]:=t; p[t_List]:={}; p[{, t_List}]:=t; Select[ Range@ 20000, (r = p@ RealDigits[1/#][[1]]; Length@ r > 1 && r == Reverse@ r) &] (* Giovanni Resta, Apr 23 2025 *)
-
Python
from itertools import count, islice from sympy import multiplicity, n_order def A382638_gen(startvalue=1): # generator of terms >= startvalue for k in count(max(startvalue,1)): m2, m5 = multiplicity(2,k), multiplicity(5,k) r = max(m2,m5) b, m = 10**r, 10**(t:=n_order(10,c) if (c:=(k>>m2)//5**m5)>1 else 1)-1 s = str(m*b//k-b//k*m).zfill(t) if len(s)>1 and s[:(l:=len(s)+1>>1)]==s[:-l-1:-1]: yield k A382638_list = list(islice(A382638_gen(),4)) # Chai Wah Wu, Apr 22 2025
Extensions
More terms from Bert Dobbelaere, Apr 27 2025