This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382639 #11 Apr 08 2025 12:23:45 %S A382639 10458834002271815117,26476006821087640697,44350865905809142637, %T A382639 54014646858393564377,62155369550078511587,253586253591518370557, %U A382639 304079924911990894547,423291158347150012877,511505988322414165037,512761727903842750367,644424770171034352457,675759858713748355427 %N A382639 Initial members of prime 16-tuples containing two prime octuplets at minimum distance. %C A382639 Prime 16-tuples are in the form, (p, p+2, p+6, p+12, p+14, p+20, p+24, p+26, p+60, p+62, p+66, p+72, p+74, p+80, p+84, p+86). %C A382639 Prime octuplets are in the form, (p, p+2, p+6, p+12, p+14, p+20, p+24, p+26). See A022012 for initial members of that pattern. %H A382639 T. Forbes and Norman Luhn, <a href="https://pzktupel.de/APTuple.php">Prime k-tuplets, Initial members of "L - consecutive prime k-tuplets with the smallest possible and constant gap (D)"</a> %H A382639 Jörg Waldvogel and Peter Leikauf, <a href="https://people.math.ethz.ch/~joergw/Projects/clprimes03.pdf">Finding Clusters of Primes, I, Progress Report 2003 - 2005</a>, Seminar for Applied Mathematics SAM Swiss Federal Institute of Technology ETH, CH-8092 Zürich (2003) (identifying first 94 terms). %H A382639 Jörg Waldvogel and Peter Leikauf, <a href="https://people.math.ethz.ch/~joergw/Projects/parallelization.html">Parallelization of Low-Communication Processes</a>, Seminar for Applied Mathematics SAM Swiss Federal Institute of Technology ETH, CH-8092 Zürich (alternate link). %Y A382639 Cf. A022012. %K A382639 nonn %O A382639 1,1 %A A382639 _Federico Salas_, Apr 01 2025