cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382660 The unitary totient function applied to the exponentially odd numbers (A268335).

This page as a plain text file.
%I A382660 #8 Apr 02 2025 12:43:50
%S A382660 1,1,2,4,2,6,7,4,10,12,6,8,16,18,12,10,22,14,12,26,28,8,30,31,20,16,
%T A382660 24,36,18,24,28,40,12,42,22,46,32,52,26,40,42,36,28,58,60,30,48,20,66,
%U A382660 44,24,70,72,36,60,24,78,40,82,64,42,56,70,88,72,60,46,72
%N A382660 The unitary totient function applied to the exponentially odd numbers (A268335).
%H A382660 Amiram Eldar, <a href="/A382660/b382660.txt">Table of n, a(n) for n = 1..10000</a>
%F A382660 a(n) = A047994(A268335(n)).
%F A382660 Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(4)/(2*d^2)) * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 2/p^4 + 1/p^5) = 0.504949539649594981601..., and d = A065463 is the asymptotic density of the exponentially odd numbers.
%t A382660 f[p_, e_] := p^e-1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; expOddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; uphi /@ Select[Range[100], expOddQ]
%o A382660 (PARI) uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2]-1);}
%o A382660 isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if(!(f[i, 2] % 2), return (0))); 1;}
%o A382660 list(lim) = apply(uphi, select(isexpodd, vector(lim, i, i)));
%Y A382660 Cf. A013662, A047994, A065463, A268335.
%Y A382660 Similar sequences: A358346, A363825, A366438, A366439, A366534, A366535, A367417, A368711, A368979, A374456, A382661.
%K A382660 nonn,easy
%O A382660 1,3
%A A382660 _Amiram Eldar_, Apr 02 2025