cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382662 The unitary totient function applied to the cubefree numbers (A004709).

This page as a plain text file.
%I A382662 #7 Apr 02 2025 12:44:01
%S A382662 1,1,2,3,4,2,6,8,4,10,6,12,6,8,16,8,18,12,12,10,22,24,12,18,28,8,30,
%T A382662 20,16,24,24,36,18,24,40,12,42,30,32,22,46,48,24,32,36,52,40,36,28,58,
%U A382662 24,60,30,48,48,20,66,48,44,24,70,72,36,48,54,60,24,78,40
%N A382662 The unitary totient function applied to the cubefree numbers (A004709).
%H A382662 Amiram Eldar, <a href="/A382662/b382662.txt">Table of n, a(n) for n = 1..10000</a>
%F A382662 a(n) = A047994(A004709(n)).
%F A382662 Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)^2/2) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.41625329674394407438... .
%t A382662 f[p_, e_] := p^e-1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 3 &]; uphi /@ Select[Range[100], cubeFreeQ]
%o A382662 (PARI) uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2]-1); }
%o A382662 iscubefree(n) = {my(f = factor(n)); for(i=1, #f~, if(f[i, 2] > 2, return (0))); 1; }
%o A382662 list(lim) = apply(uphi, select(iscubefree, vector(lim, i, i)));
%Y A382662 Cf. A002117, A004709, A047994.
%Y A382662 Similar sequences: A366440, A366536, A366537, A368712, A368779, A369889, A376365, A376366, A379717, A382419, A382663.
%K A382662 nonn,easy
%O A382662 1,3
%A A382662 _Amiram Eldar_, Apr 02 2025