cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382663 The unitary Jordan totient function applied to the cubefree numbers (A004709).

This page as a plain text file.
%I A382663 #8 Apr 02 2025 12:43:56
%S A382663 1,3,8,15,24,24,48,80,72,120,120,168,144,192,288,240,360,360,384,360,
%T A382663 528,624,504,720,840,576,960,960,864,1152,1200,1368,1080,1344,1680,
%U A382663 1152,1848,1800,1920,1584,2208,2400,1872,2304,2520,2808,2880,2880,2520,3480,2880
%N A382663 The unitary Jordan totient function applied to the cubefree numbers (A004709).
%H A382663 Amiram Eldar, <a href="/A382663/b382663.txt">Table of n, a(n) for n = 1..10000</a>
%F A382663 a(n) = A191414(A004709(n)).
%F A382663 Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)^3/3) * Product_{p prime} (1 - 2/p^3 + 1/p^4 - 1/p^6 + 1/p^7) = 0.42656661743049439763... .
%t A382663 f[p_, e_] := p^(2*e)-1; uj2[1] = 1; uj2[n_] := Times @@ f @@@ FactorInteger[n]; cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 3 &]; uj2 /@ Select[Range[100], cubeFreeQ]
%o A382663 (PARI) uj2(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^(2*f[i, 2])-1); }
%o A382663 iscubefree(n) = {my(f = factor(n)); for(i=1, #f~, if(f[i, 2] > 2, return (0))); 1; }
%o A382663 list(lim) = apply(uj2, select(iscubefree, vector(lim, i, i)));
%Y A382663 Cf. A002117, A004709, A191414.
%Y A382663 Similar sequences: A366440, A366536, A366537, A368712, A368779, A369889, A376365, A376366, A379717, A382419, A382662.
%K A382663 nonn,easy
%O A382663 1,2
%A A382663 _Amiram Eldar_, Apr 02 2025