This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382666 #40 May 04 2025 23:44:00 %S A382666 2,2,6,512,3918,48966 %N A382666 Smallest k such that 7^(7^n) - k is prime. %C A382666 This is to 7 as A058220 is to 2, A140331 is to 3 and A364454 is to 6. %C A382666 a(6) > 10000. - _Michael S. Branicky_, Apr 15 2025 %e A382666 a(2) = 6 because 7^(7^2) - 6 = 256923577521058878088611477224235621321601 is prime. %t A382666 lst={};Do[Do[p=7^(7^n)-k;If[PrimeQ[p],AppendTo[lst,k];Break[]],{k,2,11!}],{n,7}];lst %t A382666 Table[k=1;Monitor[Parallelize[While[True,If[PrimeQ[7^(7^n)-k],Break[]];k++];k],k],{n,0,7}] %t A382666 y[n_] := Module[{x = 7^(7^n)}, x - NextPrime[x, -1]]; Array[y, 7] %o A382666 (PARI) a(n) = my(x = 7^(7^n)); x - precprime(x-1); %o A382666 (Python) %o A382666 from sympy import prevprime %o A382666 def a(n): %o A382666 base = 7**(7**n) %o A382666 return base - prevprime(base) %o A382666 # _Jakub Buczak_, May 04 2025 %Y A382666 Cf. A058220, A140331, A364452, A364453, A364454. %K A382666 nonn,hard,more %O A382666 0,1 %A A382666 _J.W.L. (Jan) Eerland_, Apr 08 2025 %E A382666 a(5) from _Michael S. Branicky_, Apr 14 2025