This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382667 #55 Apr 27 2025 08:00:23 %S A382667 3,11,16,11,16,15,25,60,91,14,11,126,58,393,207,18,14,13,6,180,141, %T A382667 169,58,243,47,326,168,475,15,291,451,108,64,87,327,421,358,41,356, %U A382667 468,343,16,618,107,80,179,57,206,291,325,361,205,427,12,95,108,436,6,996 %N A382667 Position of the first instance of prime(n), in base 2, in the binary representation of Pi after the binary point. %C A382667 Positions are numbered starting from 1 for the first bit after the binary point in Pi. %F A382667 a(n) = A178707(A000040(n)). - _Pontus von Brömssen_, Apr 12 2025 %e A382667 For n=19, the bits of Pi and their numbering, after the binary point, begin %e A382667 1 2 3 4 5 6 7 8 9 ... %e A382667 1 1 . 0 0 1 0 0 1 0 0 0 0 1 1 1 1 ... %e A382667 \-----------/ %e A382667 prime(19) = 67 %e A382667 prime(19) = 1000011_2 begins at position a(19) = 6. %e A382667 prime(58) = 271 = 100001111_2 also starts at 6 => a(58) = 6. %t A382667 p=Drop[RealDigits[Pi,2,1010][[1]],2](* increase for n>73 *);a[n_]:=First[SequencePosition[p,IntegerDigits[Prime[n],2]][[1]]] (* _James C. McMahon_, Apr 26 2025 *) %o A382667 (Python) %o A382667 import gmpy2 %o A382667 from sympy import isprime %o A382667 gmpy2.get_context().precision = 12000000 %o A382667 gmpy2.get_context().round = gmpy2.RoundDown %o A382667 pi = gmpy2.const_pi() %o A382667 binary_pi = gmpy2.digits(pi, 2)[0][2:] # Get binary digits and remove "11" %o A382667 print([binary_pi.find(bin(cand)[2:])+1 for cand in range(2, 700) if isprime(cand)]) %Y A382667 Cf. A000040, A004601, A178707, A233836, A378472, A382307. %K A382667 nonn,base %O A382667 1,1 %A A382667 _James S. DeArmon_, Apr 02 2025