This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382673 #21 Apr 06 2025 03:48:13 %S A382673 1,1,1,1,4,1,1,10,10,1,1,22,52,22,1,1,46,208,208,46,1,1,94,736,1372, %T A382673 736,94,1,1,190,2440,7516,7516,2440,190,1,1,382,7792,37012,60316, %U A382673 37012,7792,382,1,1,766,24328,170668,418996,418996,170668,24328,766,1,1,1534,74896,754132,2653036,3964684,2653036,754132,74896,1534,1 %N A382673 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] exp(x+y) / (exp(x) + exp(y) - exp(x+y))^3. %F A382673 E.g.f.: exp(x+y) / (exp(x) + exp(y) - exp(x+y))^3. %F A382673 A(n,k) = A(k,n). %F A382673 A(n,k) = Sum_{j=0..min(n,k)} (j!)^2 * binomial(j+2,2) * Stirling2(n+1,j+1) * Stirling2(k+1,j+1). %e A382673 Square array begins: %e A382673 1, 1, 1, 1, 1, 1, ... %e A382673 1, 4, 10, 22, 46, 94, ... %e A382673 1, 10, 52, 208, 736, 2440, ... %e A382673 1, 22, 208, 1372, 7516, 37012, ... %e A382673 1, 46, 736, 7516, 60316, 418996, ... %e A382673 1, 94, 2440, 37012, 418996, 3964684, ... %e A382673 ... %o A382673 (PARI) a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*stirling(n+1, j+1, 2)*stirling(k+1, j+1, 2)); %Y A382673 Columns k=0..2 give A000012, A033484, A382675. %Y A382673 Main diagonal gives A382676. %Y A382673 Cf. A099594, A136126, A382674. %Y A382673 Cf. A382735. %K A382673 nonn,tabl %O A382673 0,5 %A A382673 _Seiichi Manyama_, Apr 03 2025