cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382679 a(n) = A381968(A380817(n)).

This page as a plain text file.
%I A382679 #14 May 30 2025 23:30:39
%S A382679 1,5,3,4,2,6,14,10,12,8,11,9,13,7,15,27,21,25,19,23,17,22,20,24,18,26,
%T A382679 16,28,44,36,42,34,40,32,38,30,37,35,39,33,41,31,43,29,45,65,55,63,53,
%U A382679 61,51,59,49,57,47,56,54,58,52,60,50,62,48,64,46,66
%N A382679 a(n) = A381968(A380817(n)).
%C A382679 This sequence can be regarded as a triangular array read by rows. Each row is a permutation of a block of consecutive numbers; the blocks are disjoint and every positive number belongs to some block. The length of row n is 4n-3 = A016813(n-1), n > 0.
%C A382679 The sequence can also be regarded as a table read by upward antidiagonals. For n > 1 row n joins two consecutive antidiagonals.
%C A382679 The sequence is a self-inverse permutation of the positive integers.
%C A382679 In particular, the initial {a(1), a(2), ..., a(A000384(n+1))} is self-inverse.
%C A382679 The sequence is an intra-block permutation of the positive integers.
%C A382679 Generalization of the Cantor numbering method.
%C A382679 A381968 and  and A380817 generate via composition a finite non-abelian group of permutations of positive integers, isomorphic to the dihedral Group D4. The list of the 8 elements of that group: this sequence, A382680 (the inverse permutation), A000027 (the identity permutation), A381968, A381662, A382499, A380817, A376214. For subgroups and the Cayley table of the group D4 see Boris Putievskiy (2025 D4 (I)) link. - _Boris Putievskiy_, Apr 27 2025
%C A382679 A378762, A381968 and A380817 generate via composition a finite non-abelian group of permutations of positive integers, isomorphic to the direct product of the dihedral group D4 and the cyclic group C2. The list of the 16 elements of that group: this sequence, A000027 (the identity permutation), A381968, A381662, A382499, A380817, A376214, A382680, A378762, A383419, A383589, A383590, A056023, A383722, A383723, 383724. For subgroups and the Cayley table of the group D4xC2 see Boris Putievskiy (2025 D4xC2) link. - _Boris Putievskiy_, May 27 2025
%H A382679 Boris Putievskiy, <a href="/A382679/b382679.txt">Table of n, a(n) for n = 1..9730</a>
%H A382679 Boris Putievskiy, <a href="https://arxiv.org/abs/2310.18466">Integer Sequences: Irregular Arrays and Intra-Block Permutations</a>, arXiv:2310.18466 [math.CO], 2023.
%H A382679 Boris Putievskiy, <a href="/A381968/a381968.pdf">The Dihedral Group D4 (I): Subgroups and the Cayley Table</a> (2025 D4 (I)).
%H A382679 Boris Putievskiy, <a href="/A378762/a378762.pdf">The Direct Product D4xC2: Subgroups and the Cayley Table</a> (2025 D4xC2).
%H A382679 Groupprops, <a href="https://groupprops.subwiki.org/wiki/Subgroup_structure_of_direct_product_of_D8_and_Z2">Subgroup structure of direct product of D8 and Z2</a>.
%H A382679 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DihedralGroupD4.html">Dihedral Group D_4</a>.
%H A382679 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>.
%F A382679 T(n,k) for 1 <= k <= 4n - 3: T(n,k) = A000384(n-1) + P(n,k), P(n, k) = 2m - 1 - k if k < m and k == 1 (mod 2), P(n, k) = m + 1 - k if k < m and k == 0 (mod 2), P(n, k) = k if k >= m and k == 1 (mod 2), P(n, k) = 2m - 1 - k if k >= m and k == 0 (mod 2),
%F A382679   where m = 2n - 1.
%e A382679 Triangle array begins:
%e A382679   k=    1   2   3  4   5  6   7  8   9
%e A382679   n=1:  1;
%e A382679   n=2:  5,  3,  4, 2,  6;
%e A382679   n=3: 14, 10, 12, 8, 11, 9, 13, 7, 15;
%e A382679 (1,5,3,...,7,15) = (1,5,3,...,7,15)^(-1).
%e A382679 (1,5,3,...,7,15) = (1,5,3,...,9,15) (1,2,3,...,10,7,...,14,15).  The first permutation on the right-hand side is from Example A381968 and the second from Example A380817.
%e A382679 For n > 1, each row of triangle array joins two consecutive upward antidiagonals in the table:
%e A382679    1,  3,  6,  8, 15, ...
%e A382679    5,  2, 12,  7, 23, ...
%e A382679    4, 10, 13, 19, 26, ...
%e A382679   14,  9, 25, 18, 40, ...
%e A382679   11, 21, 24, 34, 41, ...
%e A382679   ...
%e A382679 Subtracting (n-1)*(2*n-3) from each term in row n produces a permutation of numbers from 1 to 4*n-3:
%e A382679   1;
%e A382679   4, 2, 3, 1, 5;
%e A382679   8, 4, 6, 2, 5, 3, 7, 1, 9.
%t A382679 T[n_,k_]:=(n-1)*(2*n-3)+Module[{m=2*n-1},If[k<m,If[OddQ[k],2m-1-k,m+1-k],If[OddQ[k],k,2m-1-k]]]
%t A382679 Nmax= 3;Flatten[Table[T[n,k],{n,1,Nmax},{k,1,4*n-3}]]
%Y A382679 Cf. A000027, A000384, A016813 (row lengths), A056023, A376214, A378684, A378762, A379342, A379343, A380200, A380245, A380815, A380817, A381662, A381663, A381664, A381968, A382679, A382680, A383419, A383589, A383590, A383722, A383723, A383724.
%K A382679 nonn,tabf
%O A382679 1,2
%A A382679 _Boris Putievskiy_, Apr 03 2025