A382708 Number of triples (i,j,k), 1 <= i < j < k <= n such that A064413(i) < A064413(k) < A064413(j).
0, 0, 0, 0, 4, 4, 4, 14, 20, 39, 39, 39, 59, 97, 97, 97, 134, 162, 177, 260, 260, 280, 300, 360, 360, 423, 525, 694, 694, 722, 817, 895, 1129, 1129, 1162, 1254, 1546, 1546, 1615, 1751, 1856, 1925, 2326, 2326, 2436, 2546, 2625, 2704, 2783, 3061, 3104, 3196, 3415, 3458, 3458, 3699, 4439, 4439, 4590, 4890, 5725, 5725, 5842
Offset: 1
Keywords
Examples
The first 5 terms of A064413 are 1, 2, 4, 6, 3, and at that point we can see four occurrences of the pattern "132", namely the triples 143, 163, 243, and 263, so a(5) = 4.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..100
Comments