cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382726 Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 7.

This page as a plain text file.
%I A382726 #23 Aug 15 2025 15:57:39
%S A382726 1,3,6,10,15,21,28,30,34,40,48,58,70,84,87,93,102,114,129,147,168,172,
%T A382726 180,192,208,228,252,280,285,295,310,330,355,385,420,426,438,456,480,
%U A382726 510,546,588,595,609,630,658,693,735,784,786,790,796,804,814,826,840,844,852,864,880,900,924,952,958,970,988,1012,1042,1078
%N A382726 Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 7.
%C A382726 Partial sums of A382720. - _James C. McMahon_, Aug 15 2025
%H A382726 Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, <a href="https://arxiv.org/abs/2408.06817">Periodic minimum in the count of binomial coefficients not divisible by a prime</a>, arXiv:2408.06817 [math.NT], 2024.
%t A382726 a[n_]:=(n^2+3n+2)/2-Count[Mod[Flatten[Table[Binomial[m, k], {m, 0,n}, {k, 0,m}]] ,7],0];Array[a,69,0] (* _James C. McMahon_, Aug 15 2025 *)
%o A382726 (Python)
%o A382726 from math import prod
%o A382726 from gmpy2 import digits
%o A382726 def A382726(n): return sum(prod(int(d)+1 for d in digits(m,7)) for m in range(n+1)) # _Chai Wah Wu_, Aug 10 2025
%o A382726 (Python)
%o A382726 from math import prod
%o A382726 from gmpy2 import digits
%o A382726 def A382726(n):
%o A382726     d = list(map(lambda x:int(x)+1,digits(n+1,7)[::-1]))
%o A382726     return sum((b-1)*prod(d[a:])*28**a for a, b in enumerate(d))>>1 # _Chai Wah Wu_, Aug 13 2025
%Y A382726 Cf. A001316, A006046-A006048, A194458, A194459, A382720-A382731.
%K A382726 nonn
%O A382726 0,2
%A A382726 _N. J. A. Sloane_, Apr 23 2025