cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382727 Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 11.

This page as a plain text file.
%I A382727 #15 Aug 13 2025 21:34:54
%S A382727 1,3,6,10,15,21,28,36,45,55,66,68,72,78,86,96,108,122,138,156,176,198,
%T A382727 201,207,216,228,243,261,282,306,333,363,396,400,408,420,436,456,480,
%U A382727 508,540,576,616,660,665,675,690,710,735,765,800,840,885,935,990,996,1008,1026,1050,1080,1116,1158,1206,1260,1320,1386,1393,1407
%N A382727 Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 11.
%H A382727 Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, <a href="https://arxiv.org/abs/2408.06817">Periodic minimum in the count of binomial coefficients not divisible by a prime</a>, arXiv:2408.06817 [math.NT], 2024.
%o A382727 (Python)
%o A382727 from math import prod
%o A382727 from gmpy2 import digits
%o A382727 def A382727(n): return sum(prod(int(d,11)+1 for d in digits(m,11)) for m in range(n+1)) # _Chai Wah Wu_, Aug 10 2025
%o A382727 (Python)
%o A382727 from math import prod
%o A382727 from gmpy2 import digits
%o A382727 def A382727(n):
%o A382727     d = list(map(lambda x:int(x,11)+1,digits(n+1,11)[::-1]))
%o A382727     return sum((b-1)*prod(d[a:])*66**a for a, b in enumerate(d))>>1 # _Chai Wah Wu_, Aug 13 2025
%Y A382727 Cf. A001316, A006046-A006048, A194458, A194459, A382720-A382731.
%K A382727 nonn
%O A382727 0,2
%A A382727 _N. J. A. Sloane_, Apr 23 2025