A382728 Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 13.
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 93, 97, 103, 111, 121, 133, 147, 163, 181, 201, 223, 247, 273, 276, 282, 291, 303, 318, 336, 357, 381, 408, 438, 471, 507, 546, 550, 558, 570, 586, 606, 630, 658, 690, 726, 766, 810, 858, 910, 915, 925, 940, 960, 985, 1015, 1050, 1090, 1135, 1185, 1240, 1300, 1365, 1371, 1383, 1401
Offset: 0
Keywords
Links
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Periodic minimum in the count of binomial coefficients not divisible by a prime, arXiv:2408.06817 [math.NT], 2024.
Programs
-
Python
from math import prod from gmpy2 import digits def A382728(n): return sum(prod(int(d,13)+1 for d in digits(m,13)) for m in range(n+1)) # Chai Wah Wu, Aug 10 2025
-
Python
from math import prod from gmpy2 import digits def A382728(n): d = list(map(lambda x:int(x,13)+1,digits(n+1,13)[::-1])) return sum((b-1)*prod(d[a:])*91**a for a, b in enumerate(d))>>1 # Chai Wah Wu, Aug 13 2025