This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382731 #12 Aug 17 2025 07:59:41 %S A382731 1,3,6,10,15,21,28,36,41,51,60,72,83,97,111,127,132,142,155,175,188, %T A382731 206,226,250,261,283,303,331,353,381,409,441,446,456,469,489,506,532, %U A382731 560,600,613,639,665,701,729,769,809,857,868,890,918,962,990,1030,1074,1130,1152,1196,1236,1292,1336,1392,1448,1512,1517,1527 %N A382731 Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 8. %H A382731 James G. Huard, Blair K. Spearman, and Kenneth S. Williams, <a href="https://doi.org/10.1006/eujc.1997.0146">Pascal's triangle (mod 8)</a>, European Journal of Combinatorics 19:1 (1998), pp. 45-62. %o A382731 (Python) %o A382731 def A382731(n): %o A382731 c = 0 %o A382731 for m in range(n+1): %o A382731 n1 = m>>1 %o A382731 n2 = n1>>1 %o A382731 np = ~m %o A382731 n100 = (n2&(~n1)&np).bit_count() %o A382731 n110 = (n2&n1&np).bit_count() %o A382731 n10 = (n1&np).bit_count() %o A382731 c += ((n100+1<<3)+(n110<<1)+n10*(n10+3))<<m.bit_count()>>3 %o A382731 return c # _Chai Wah Wu_, Aug 10 2025 %Y A382731 Cf. A001316, A006046-A006048, A194458, A194459, A382720-A382730. %K A382731 nonn,changed %O A382731 0,2 %A A382731 _N. J. A. Sloane_, Apr 23 2025