This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382744 #39 Apr 11 2025 03:33:33 %S A382744 1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19,21,22,23,24,25,26,27,28,29, %T A382744 31,32,33,34,36,37,38,39,41,42,43,44,46,47,48,49,50,51,52,53,54,56,57, %U A382744 58,59,61,62,63,64,66,67,68,69,71,72,73,74,75,76,77,78,79,81,82,83,84 %N A382744 If k appears, 5*k does not. %C A382744 Also: numbers with an even number of 5's in their prime factorization. %C A382744 Natural density 5/6. %H A382744 Jan Snellman, <a href="/A382744/b382744.txt">Table of n, a(n) for n = 1..8333</a> %H A382744 Jan Snellman, <a href="https://arxiv.org/abs/2504.02795">Greedy Regular Convolutions</a>, arXiv:2504.02795 [math.NT], 2025. %F A382744 a(n) ~ (6/5)*n. %e A382744 5 is removed since 5 = 5*1, 10 is removed, 15 is removed, 20 is removed, but 25 remains. %p A382744 select(t -> padic:-ordp(t,5)::even, [$1..100]); # _Robert Israel_, Apr 04 2025 %t A382744 Select[Range[100], EvenQ[IntegerExponent[#, 5]] &] (* _Amiram Eldar_, Apr 04 2025 *) %o A382744 (SageMath) %o A382744 [_ for _ in range(1,100) if (valuation(_,5) % 2) == 0] %o A382744 (Python) %o A382744 def ok(n): %o A382744 c = 0 %o A382744 while n and n%5 == 0: n //= 5; c += 1 %o A382744 return c&1 == 0 %o A382744 print([k for k in range(1, 82) if ok(k)]) # _Michael S. Branicky_, Apr 04 2025 %o A382744 (Python) %o A382744 from sympy import integer_log %o A382744 def A382744(n): %o A382744 def f(x): return n+x-sum((k:=x//5**m)-k//5 for m in range(0,integer_log(x,5)[0]+1,2)) %o A382744 m, k = n, f(n) %o A382744 while m != k: m, k = k, f(k) %o A382744 return m # _Chai Wah Wu_, Apr 10 2025 %Y A382744 Cf. A003159, A007417, A382745, A382746. %K A382744 nonn %O A382744 1,2 %A A382744 _Jan Snellman_, Apr 04 2025