This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382745 #32 Apr 11 2025 03:34:38 %S A382745 1,2,3,4,5,6,8,9,10,11,12,13,15,16,17,18,19,20,22,23,24,25,26,27,29, %T A382745 30,31,32,33,34,36,37,38,39,40,41,43,44,45,46,47,48,49,50,51,52,53,54, %U A382745 55,57,58,59,60,61,62,64,65,66,67,68,69,71,72,73,74,75,76,78,79,80,81,82,83,85 %N A382745 If k appears, 7*k does not. %C A382745 Also numbers with an even number of 7's in their prime factorization. %C A382745 Natural density 7/8. %H A382745 Jan Snellman, <a href="/A382745/b382745.txt">Table of n, a(n) for n = 1..8751</a> %H A382745 Jan Snellman, <a href="https://arxiv.org/abs/2504.02795">Greedy Regular Convolutions</a>, arXiv:2504.02795 [math.NT], 2025. %F A382745 a(n) ~ (8/7)*n. %e A382745 7 is removed since 7 = 7*1, 14, 21, 28, 35, 42 are removed, but 49 remains. %p A382745 q:= n-> is(irem(padic[ordp](n,7), 2)=0): %p A382745 select(q, [$1..85])[]; # _Alois P. Heinz_, Apr 04 2025 %t A382745 Select[Range[100], EvenQ[IntegerExponent[#, 7]] &] (* _Amiram Eldar_, Apr 04 2025 *) %o A382745 (Python) %o A382745 def ok(n): %o A382745 c = 0 %o A382745 while n and n%7 == 0: n //= 7; c += 1 %o A382745 return c&1 == 0 %o A382745 print([k for k in range(1, 86) if ok(k)]) # _Michael S. Branicky_, Apr 04 2025 %o A382745 (Python) %o A382745 from sympy import integer_log %o A382745 def A382745(n): %o A382745 def f(x): return n+x-sum((k:=x//7**m)-k//7 for m in range(0,integer_log(x,7)[0]+1,2)) %o A382745 m, k = n, f(n) %o A382745 while m != k: m, k = k, f(k) %o A382745 return m # _Chai Wah Wu_, Apr 10 2025 %Y A382745 Cf. A003159, A007417, A382744, A382746. %K A382745 nonn,easy %O A382745 1,2 %A A382745 _Jan Snellman_, Apr 04 2025