This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382746 #35 May 31 2025 06:49:54 %S A382746 1,2,3,4,5,6,7,9,10,11,12,13,14,15,17,18,19,20,21,22,23,25,26,27,28, %T A382746 29,30,31,33,34,35,36,37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,54, %U A382746 55,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,73,74,75,76,77,78,79 %N A382746 If k appears, 8*k does not. %C A382746 Also: integers of the form 2^m*r, r odd, m congruent to 0, 1, 2 mod 6. %C A382746 The asymptotic density of this sequence is 8/9. - _Amiram Eldar_, May 31 2025 %H A382746 Jan Snellman, <a href="/A382746/b382746.txt">Table of n, a(n) for n = 1..8889</a> %H A382746 Jan Snellman, <a href="https://arxiv.org/abs/2504.02795">Greedy Regular Convolutions</a>, arXiv:2504.02795 [math.NT], 2025. %e A382746 8, 16, ... , 56 are removed, but 8*8 = 64 remains. %t A382746 Select[Range[100], Mod[IntegerExponent[#, 2], 6] < 3 &] (* _Amiram Eldar_, Apr 04 2025 *) %o A382746 (Sage) %o A382746 [_ for _ in range(1,100) if (valuation(_,2) % 6) < 3] %o A382746 (Python) %o A382746 from functools import lru_cache %o A382746 @lru_cache(maxsize=None, typed=True) %o A382746 def in_sieve(n, S): %o A382746 if n == 1: %o A382746 return True %o A382746 elif n in S: %o A382746 return False %o A382746 else: %o A382746 L = [s for s in S if (n % s) == 0] %o A382746 return all(not in_sieve(n/ell, S) for ell in L ) %o A382746 def nth_in_sieve(n, S): %o A382746 if n == 1: %o A382746 return 1 %o A382746 else: %o A382746 i, m = 1, 1 %o A382746 while i < n: %o A382746 m = m+1 %o A382746 if in_sieve(m, S): %o A382746 i = i+1 %o A382746 return m %o A382746 def a(n): %o A382746 return nth_in_sieve(n, tuple([8])) %o A382746 (Python) %o A382746 def A382746(n): %o A382746 def f(x): return n+x-sum((x>>m)+1>>1 for m in range(x.bit_length()+1) if m%6<3) %o A382746 m, k = n, f(n) %o A382746 while m != k: m, k = k, f(k) %o A382746 return m # _Chai Wah Wu_, Apr 10 2025 %o A382746 (PARI) isok(k) = valuation(k, 2) % 6 < 3; \\ _Amiram Eldar_, May 31 2025 %Y A382746 Cf. A003159, A007417, A382744, A382745. %K A382746 nonn,easy %O A382746 1,2 %A A382746 _Jan Snellman_, Apr 04 2025