A382748 Primitive exponents for the greedy convolution of length 4.
1, 5, 6, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 30, 31, 32, 35, 36, 37, 40, 41, 42, 43, 45, 47, 48, 49, 53, 55, 56, 59, 61, 63, 65, 66, 67, 71, 73, 77, 78, 79, 83, 85, 88, 89, 91, 95, 97, 99, 101, 102, 103, 104, 107, 109, 113, 114, 115, 117, 119, 121, 125, 127, 131, 133, 135, 136, 137, 138, 139
Offset: 1
Examples
Up to n=15 the branches of the aforementioned tree looks like 0 - 1 - 2 - 3 - 4 0 - 5 - 10 - 15 0 - 6 - 12 0 - 7 - 14 0 - 8 0 - 9 0 - 11 0 - 13 so the primitive elements <= 15 are 1, 5, 6, 7, 8, 9, 11, 13.
Links
- Jan Snellman, Table of n, a(n) for n = 1..2598
- W. Narkiewicz, On a class of arithmetical convolutions, Colloq. Math. 10, 1963, pp 81--94.
- Jan Snellman, Greedy Regular Convolutions, arXiv:2504.02795 [math.NT], 2025.
Programs
-
SageMath
# See A382747.
Comments