This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382771 #16 Apr 21 2025 10:47:19 %S A382771 1,1,1,1,1,0,1,1,1,0,1,2,1,0,0,1,1,2,1,2,0,0,1,2,1,0,1,2,1,0,1,1,0,0, %T A382771 0,0,1,0,0,2,1,0,1,2,2,0,1,2,1,2,0,2,1,2,0,2,0,0,1,0,1,0,2,1,0,0,1,2, %U A382771 0,0,1,2,1,0,2,2,0,0,1,2,1,0,1,0,0,0,0 %N A382771 Number of ways to permute the prime indices of n so that the run-lengths are all different. %C A382771 The first x with a(x) > 0 but A382857(x) > 1 is a(216) = 4, A382857(216) = 4. %C A382771 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %F A382771 a(A181821(n)) = a(A304660(n)) = A382773(n). %F A382771 a(n!) = A382774(n). %e A382771 The a(96) = 4 permutations are: %e A382771 (1,1,1,1,1,2) %e A382771 (1,1,1,2,1,1) %e A382771 (1,1,2,1,1,1) %e A382771 (2,1,1,1,1,1) %e A382771 The a(216) = 4 permutations are: %e A382771 (1,1,2,2,2,1) %e A382771 (1,2,2,2,1,1) %e A382771 (2,1,1,1,2,2) %e A382771 (2,2,1,1,1,2) %e A382771 The a(360) = 6 permutations are: %e A382771 (1,1,1,2,2,3) %e A382771 (1,1,1,3,2,2) %e A382771 (2,2,1,1,1,3) %e A382771 (2,2,3,1,1,1) %e A382771 (3,1,1,1,2,2) %e A382771 (3,2,2,1,1,1) %t A382771 Table[Length[Select[Permutations[Join@@ConstantArray@@@FactorInteger[n]],UnsameQ@@Length/@Split[#]&]],{n,30}] %Y A382771 Positions of 1 are A000961. %Y A382771 Positions of positive terms are A351294, conjugate A381432. %Y A382771 Positions of 0 are A351295, conjugate A381433, equal A382879. %Y A382771 Sorted positions of first appearances are A382772, equal A382878. %Y A382771 For prescribed signature we have A382773, equal A382858. %Y A382771 The restriction to factorials is A382774, equal A335407. %Y A382771 For equal instead of distinct run-lengths we have A382857. %Y A382771 For run-sums instead of run-lengths we have A382876, equal A382877. %Y A382771 Positions of terms > 1 are A383113. %Y A382771 A044813 lists numbers whose binary expansion has distinct run-lengths. %Y A382771 A055396 gives least prime index, greatest A061395. %Y A382771 A056239 adds up prime indices, row sums of A112798. %Y A382771 A098859 counts partitions with distinct multiplicities, ordered A242882. %Y A382771 A239455 counts Look-and-Say partitions, complement A351293. %Y A382771 A329738 counts compositions with equal run-lengths, ranks A353744. %Y A382771 A329739 counts compositions with distinct run-lengths, ranks A351596. %Y A382771 Cf. A000720, A001221, A001222, A003242, A048767, A051903, A051904, A130091, A238130, A351013, A351202. %K A382771 nonn %O A382771 1,12 %A A382771 _Gus Wiseman_, Apr 07 2025