A382773 Number of ways to permute a multiset whose multiplicities are the prime indices of n so that the run-lengths are all different.
1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 4, 4, 1, 0, 4, 4, 0, 0, 1, 6, 1, 0, 4, 6, 4, 0, 1, 6, 4, 0, 1, 6, 1, 0, 0, 8, 1, 0, 4, 0, 6, 0, 1, 0, 6, 0, 6, 8, 1, 0, 1, 10, 0, 0, 8, 6, 1, 0, 8, 6, 1, 0, 1, 10, 0, 0, 6, 6, 1, 0, 0, 12, 1, 0, 16
Offset: 1
Keywords
Examples
The a(n) partitions for n = 6, 21, 30, 46: (1,1,2) (1,1,1,1,2,2) (1,1,1,2,2,3) (1,1,1,1,1,1,1,1,1,2) (2,1,1) (1,1,1,2,2,1) (1,1,1,3,2,2) (1,1,1,1,1,1,1,2,1,1) (1,2,2,1,1,1) (2,2,1,1,1,3) (1,1,1,1,1,1,2,1,1,1) (2,2,1,1,1,1) (2,2,3,1,1,1) (1,1,1,1,1,2,1,1,1,1) (3,1,1,1,2,2) (1,1,1,1,2,1,1,1,1,1) (3,2,2,1,1,1) (1,1,1,2,1,1,1,1,1,1) (1,1,2,1,1,1,1,1,1,1) (2,1,1,1,1,1,1,1,1,1)
Crossrefs
Programs
-
Mathematica
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Table[Length[Select[Permutations[nrmptn[n]],UnsameQ@@Length/@Split[#]&]],{n,100}]
Comments