This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382775 #6 Apr 13 2025 21:08:57 %S A382775 6,1,8,32,64,128,256,6144,512,27648,1024,73728,2048,147456,165888, %T A382775 4096,248832,196608,8192,497664,1119744,393216,16384,2239488 %N A382775 Least number appearing n times in A048767 (rank of Look-and-Say partition of prime indices). %C A382775 Also the position of first appearance of n in A382525 (number of times n appears in A048767). %C A382775 The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. Hence, the multiplicity of k in the Look-and-Say partition of y is the sum of all parts that appear exactly k times. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)). %C A382775 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %e A382775 The terms together with their prime indices begin: %e A382775 6: {1,2} %e A382775 1: {} %e A382775 8: {1,1,1} %e A382775 32: {1,1,1,1,1} %e A382775 64: {1,1,1,1,1,1} %e A382775 128: {1,1,1,1,1,1,1} %e A382775 256: {1,1,1,1,1,1,1,1} %e A382775 6144: {1,1,1,1,1,1,1,1,1,1,1,2} %e A382775 512: {1,1,1,1,1,1,1,1,1} %e A382775 27648: {1,1,1,1,1,1,1,1,1,1,2,2,2} %e A382775 1024: {1,1,1,1,1,1,1,1,1,1} %e A382775 73728: {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2} %e A382775 2048: {1,1,1,1,1,1,1,1,1,1,1} %e A382775 147456: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2} %e A382775 165888: {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2} %e A382775 4096: {1,1,1,1,1,1,1,1,1,1,1,1} %e A382775 248832: {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2} %t A382775 stp[y_]:=Select[Tuples[Select[IntegerPartitions[#], UnsameQ@@#&]&/@y],UnsameQ@@Join@@#&]; %t A382775 z=Table[Length[stp[Last/@FactorInteger[n]]],{n,10000}]; %t A382775 mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; %t A382775 Table[Position[z,k][[1,1]],{k,0,mnrm[z+1]-1}] %Y A382775 Positions of first appearances in A382525. %Y A382775 The Look-and-Say partition is ranked by A048767, listed by A381440. %Y A382775 Look-and-Say partitions are counted by A239455, complement A351293. %Y A382775 Look-and-Say partitions are ranked by A351294. %Y A382775 Non-Look-and-Say partitions are ranked by A351295, conjugate A381433. %Y A382775 The section-sum partition is ranked by A381431, listed by A381436. %Y A382775 Section-sum partitions are ranked by A381432. %Y A382775 A055396 gives least prime index, greatest A061395. %Y A382775 A056239 adds up prime indices, row sums of A112798. %Y A382775 A122111 represents conjugation in terms of Heinz numbers. %Y A382775 Cf. A003557, A047966, A048768, A051903, A051904, A066328, A071178, A116861, A130091, A217605, A239964, A381540. %K A382775 nonn,more %O A382775 0,1 %A A382775 _Gus Wiseman_, Apr 11 2025