cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382776 Triangle read by rows: T(n,k) is the number of ways to place 2*n rooks on a (n+k) X (2*n-k) board so that there is at least one rook in every column and row and so that each rook is defended by another.

This page as a plain text file.
%I A382776 #13 Apr 05 2025 12:01:44
%S A382776 1,1,1,6,9,6,90,180,180,90,2520,6300,8100,6300,2520,113400,340200,
%T A382776 529200,529200,340200,113400,7484400,26195400,47628000,57153600,
%U A382776 47628000,26195400,7484400,681080400,2724321600,5658206400,7858620000,7858620000,5658206400,2724321600,681080400
%N A382776 Triangle read by rows: T(n,k) is the number of ways to place 2*n rooks on a (n+k) X (2*n-k) board so that there is at least one rook in every column and row and so that each rook is defended by another.
%C A382776 The configurations are such that k columns will each contain 2 rooks and n-k rows will each contain 2 rooks.
%F A382776 T(n,k) = binomial(2*n-k,k)*binomial(n+k,n-k)*(2*(n-k))!*(2*k)!/(2^n).
%F A382776 T(n,n-k) = T(n,k).
%e A382776 Triangle begins:
%e A382776         1;
%e A382776         1,        1;
%e A382776         6,        9,        6;
%e A382776        90,      180,      180,       90;
%e A382776      2520,     6300,     8100,     6300,     2520;
%e A382776    113400,   340200,   529200,   529200,   340200,   113400;
%e A382776   7484400, 26195400, 47628000, 57153600, 47628000, 26195400, 7484400;
%e A382776   ...
%e A382776 The T(2,0) = 6 configurations are:
%e A382776   X X . .    X . X .    X . . X    . X X .    . X . X    . . X X
%e A382776   . . X X    . X . X    . X X .    X . . X    X . X .    X X . .
%e A382776 The T(2,1) = 9 configurations are:
%e A382776   X X .   X . X   . X X   . . X   . X .   X . .   . . X   . X .   X . .
%e A382776   . . X   . X .   X . .   X X .   X . X   . X X   . . X   . X .   X . .
%e A382776   . . X   . X .   X . .   . . X   . X .   X . .   X X .   X . X   . X X
%o A382776 (PARI) T(n,k)=binomial(2*n-k,k)*binomial(n+k,n-k)*(2*(n-k))!*(2*k)!/(2^n)
%Y A382776 Row sums are A382777.
%Y A382776 Column k=0 is A000680.
%K A382776 nonn,tabl
%O A382776 0,4
%A A382776 _Andrew Howroyd_, Apr 04 2025