cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382787 The product of exponents in the prime factorization of the numbers whose prime factorization contains exponents that are either 1 or even.

This page as a plain text file.
%I A382787 #7 Apr 05 2025 09:10:42
%S A382787 1,1,1,2,1,1,1,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,2,1,2,1,1,1,1,1,1,4,1,1,
%T A382787 1,1,1,1,2,2,1,1,4,2,2,1,2,1,1,1,1,1,2,1,1,2,6,1,1,1,2,1,1,1,1,1,2,2,
%U A382787 1,1,1,4,4,1,1,2,1,1,1,1,2,1,2,1,1,1,1
%N A382787 The product of exponents in the prime factorization of the numbers whose prime factorization contains exponents that are either 1 or even.
%C A382787 First differs from A368473 at n = 57.
%H A382787 Amiram Eldar, <a href="/A382787/b382787.txt">Table of n, a(n) for n = 1..10000</a>
%F A382787 a(n) = A005361(A335275(n)).
%F A382787 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (zeta(2)^2 / A065465) *  Product_{p prime} (1 - 1/p^2 - 2/p^3 + 3/p^4 - 1/p^6) = 1.568148713987289233406... .
%t A382787 f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # == 1 || EvenQ[#] &], Times @@ e, Nothing]]; Array[f, 150]
%o A382787 (PARI) list(lim) = {my(e, ok); for(k = 1, lim, e = factor(k)[, 2]; ok = 1; for(i = 1, #e, if(e[i] > 1 && e[i]%2, ok = 0; break)); if(ok, print1(vecprod(e), ", ")));}
%Y A382787 Cf. A005361, A013661, A065465, A335275, A368473.
%K A382787 nonn,easy
%O A382787 1,4
%A A382787 _Amiram Eldar_, Apr 05 2025