A382788 The sum of divisors of n that are numbers whose number of divisors is a power of 2.
1, 3, 4, 3, 6, 12, 8, 11, 4, 18, 12, 12, 14, 24, 24, 11, 18, 12, 20, 18, 32, 36, 24, 44, 6, 42, 31, 24, 30, 72, 32, 11, 48, 54, 48, 12, 38, 60, 56, 66, 42, 96, 44, 36, 24, 72, 48, 44, 8, 18, 72, 42, 54, 93, 72, 88, 80, 90, 60, 72, 62, 96, 32, 11, 84, 144, 68, 54
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := Sum[p^(2^k-1), {k, 0, Floor[Log2[e + 1]]}]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = my(f = factor(n), p = f[,1], e = f[,2]); prod(i = 1, #p, sum(k = 0, exponent(e[i]+1), p[i]^(2^k-1)));
Formula
Multiplicative with a(p^e) = Sum_{k = 0..floor(log_2(e+1))} p^(2^k-1).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + Sum_{k>=1} a(p^k)/p^(2*k)) = 1.13143029377358401678... .
Comments