This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382800 #13 Apr 05 2025 16:09:57 %S A382800 1,0,0,0,3,0,0,3,3,0,0,6,27,6,0,0,18,78,78,18,0,0,72,282,588,282,72,0, %T A382800 0,360,1272,2988,2988,1272,360,0,0,2160,6936,16344,24612,16344,6936, %U A382800 2160,0,0,15120,44496,101448,175632,175632,101448,44496,15120,0 %N A382800 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (1 - log(1-x) * log(1-y))^3. %F A382800 E.g.f.: 1 / (1 - log(1-x) * log(1-y))^3. %F A382800 A(n,k) = A(k,n). %F A382800 A(n,k) = Sum_{j=0..min(n,k)} (j!)^2 * binomial(j+2,2) * |Stirling1(n,j)| * |Stirling1(k,j)|. %e A382800 Square array begins: %e A382800 1, 0, 0, 0, 0, 0, ... %e A382800 0, 3, 3, 6, 18, 72, ... %e A382800 0, 3, 27, 78, 282, 1272, ... %e A382800 0, 6, 78, 588, 2988, 16344, ... %e A382800 0, 18, 282, 2988, 24612, 175632, ... %e A382800 0, 72, 1272, 16344, 175632, 1669128, ... %o A382800 (PARI) a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*abs(stirling(n, j, 1)*stirling(k, j, 1))); %Y A382800 Main diagonal gives A382806. %Y A382800 Cf. A379821, A382799. %Y A382800 Cf. A382735, A382802. %K A382800 nonn,tabl %O A382800 0,5 %A A382800 _Seiichi Manyama_, Apr 05 2025