cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382805 a(n) = Sum_{k=0..n} (-1)^(n-k) * (Stirling1(n,k) * k!)^2.

This page as a plain text file.
%I A382805 #4 Apr 06 2025 14:56:50
%S A382805 1,1,3,4,-272,-8524,-96596,9634752,983055168,36429411456,
%T A382805 -4303305703296,-1051644384152064,-89651253435644160,
%U A382805 10632887072757561600,5599203549778990667520,914684633796830925275136,-89559567563652079025946624,-104514775371103880549281775616
%N A382805 a(n) = Sum_{k=0..n} (-1)^(n-k) * (Stirling1(n,k) * k!)^2.
%F A382805 a(n) = (n!)^2 * [(x*y)^n] 1 / (1 + log(1 + x) * log(1 - y)).
%t A382805 Table[Sum[(-1)^(n - k) (StirlingS1[n, k] k!)^2, {k, 0, n}], {n, 0, 17}]
%t A382805 Table[(n!)^2 SeriesCoefficient[1/(1 + Log[1 + x] Log[1 - y]), {x, 0, n}, {y, 0, n}], {n, 0, 17}]
%Y A382805 Cf. A006252, A007840, A047796, A048144, A192554, A320502, A382792, A382793.
%K A382805 sign
%O A382805 0,3
%A A382805 _Ilya Gutkovskiy_, Apr 05 2025