cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382813 Denominator of the n-th partial sum of the squares of the harmonic numbers.

This page as a plain text file.
%I A382813 #29 Apr 25 2025 17:15:32
%S A382813 1,4,18,144,200,400,4900,78400,635040,6350400,64033200,768398400,
%T A382813 9275666400,8657288640,16232416200,519437318400,2779951574400,
%U A382813 16679709446400,60213751101504,3823095308032,1216439416192,26761667156224,1769615240705312,127412297330782464,3062795608913040000
%N A382813 Denominator of the n-th partial sum of the squares of the harmonic numbers.
%C A382813 All terms for n>1 are even.
%H A382813 Robert Israel, <a href="/A382813/b382813.txt">Table of n, a(n) for n = 1..1000</a>
%F A382813 a(n) = denominator((n+1)*H(n)^2-(2*n+1)*H(n)+2*n), where H(n) is the n-th harmonic number.
%F A382813 a(n) = denominator((S(n)*H(n)^2+(2*n-2*S(n)+1)*H(n) - 2*n)/(H(n) - 1)), where S(n) = the n-th partial sum of H(n).
%e A382813 The squares of the first three harmonic numbers are 1, 9/4, 121/36 which sum to 119/18 so a(3) = 18.
%p A382813 H2:= n-> add(harmonic(k)^2, k = 1..n): seq(denom(H2(n)), n=1..25);
%o A382813 (PARI) a(n) = denominator(sum(k=1, n, sum(i=1, k, 1/i)^2)); \\ _Michel Marcus_, Apr 07 2025
%Y A382813 Cf. A001008, A002805, A382812 (numerators).
%Y A382813 Cf. A027611, A027612.
%K A382813 nonn,frac
%O A382813 1,2
%A A382813 _Gary Detlefs_, Apr 05 2025