This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382816 #13 Apr 13 2025 11:47:20 %S A382816 1,1,2,1,1,2,2,1,1,2,1,1,1,2,3,1,1,1,1,1,2,1,1,1,2,1,1,2,1,2,2,1,1,1, %T A382816 1,2,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,2,3,1,1,2,1,1, %U A382816 1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1 %N A382816 a(n) = number of occurrences of n in A008949. %C A382816 Numbers that occur exactly 2 times: (4, 7, 8, 11, 15, 22, 26, 29, 31, 32, 37, 42, 46, 56, 57, 63, 67, 79, 92, 93, 99, 106,...) %C A382816 Numbers that occur exactly 3 times: (16, 64, 232, 256, 466, 562, 1024, 1486, 2048,...) %C A382816 The least number that occurs exactly 4 times is 4096. %e A382816 The numbers in A008949 (partial sums of Pascal's triangle) begin thus: %e A382816 1 %e A382816 1 2 %e A382816 1 3 4 %e A382816 1 4 7 8 %e A382816 1 5 11 15 16 %e A382816 1 6 16 26 31 32 %e A382816 1 7 22 42 57 63 64 %e A382816 one 2, one 3, two 4's, etc. %t A382816 t = Flatten[Accumulate/@Table[Binomial[n, i], {n, 0, 200}, {i, 0, n}]]; (* A008949 *) %t A382816 Flatten[Table[Count[t, n], {n, 2, 200}]] %o A382816 (PARI) row(n) = my(v=vector(n+1, k, binomial(n,k-1))); vector(#v, k, sum(i=1, k, v[i])); %o A382816 a(n) = sum (i=1, n+1, #select(x->(x==n), row(i))); \\ _Michel Marcus_, Apr 13 2025 %Y A382816 Cf. A007318, A008949, A382817. %K A382816 nonn %O A382816 2,3 %A A382816 _Clark Kimberling_, Apr 07 2025