This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382818 #14 Apr 06 2025 08:45:19 %S A382818 1,2,3,3,11,8,4,24,52,20,5,42,163,227,48,6,65,372,1017,944,112,7,93, %T A382818 710,3019,6030,3800,256,8,126,1208,7095,23256,34563,14944,576,9,164, %U A382818 1897,14340,67251,173076,193392,57748,1280,10,207,2808,26082,161394,615630,1256936,1062756,220128,2816 %N A382818 Square array A(n,k), n > 0, k > 0, read by downward antidiagonals: A(n,k) is the number of columns in all k-compositions of n. %C A382818 A k-composition of n is a rectangular array of nonnegative integers with k rows, at least one nonzero entry in each column, and having the sum of all entries equal to n. %H A382818 John Tyler Rascoe, <a href="/A382818/b382818.txt">Antidiagonals n = 1..100, flattened</a> %F A382818 Column k has g.f.: -((1 - x)^k - 1)*(1 - x)^k/(((1 - x)^k - 1) + (1 - x)^k)^2. %e A382818 Square array begins: %e A382818 1, 2, 3, 4, 5, 6, ... %e A382818 3, 11, 24, 42, 65, 93, ... %e A382818 8, 52, 163, 372, 710, 1208, ... %e A382818 20, 227, 1017, 3019, 7095, 14340, ... %e A382818 48, 944, 6030, 23256, 67251, 161394, ... %e A382818 ... %e A382818 A(2,2) = 11 counts the columns in the 2-compositions of 2: %e A382818 [2] [0] [1] [1,0] [0,1] [0,0] [1,1] %e A382818 [0], [2], [1], [0,1], [1,0], [1,1], [0,0]. %o A382818 (PARI) %o A382818 A382818_Column(k,N) = {my(x='x+O('x^N)); Vec(-(((1 - x)^k - 1)*(1 - x)^k)/( ((1 - x)^k - 1) + (1 - x)^k)^2)} %o A382818 A382818_array(max_row) = {my(m=matrix(0)); for(n=1,max_row, m=matconcat([m,A382818_Column(n,max_row)~])); m} %o A382818 A382818_array(10) %Y A382818 C.f. A001792 (column k=1), A005475 (row n=2), A145839, A181289, A181290 (column k=2), A382820 (main diagonal). %K A382818 nonn,easy,tabl %O A382818 1,2 %A A382818 _John Tyler Rascoe_, Apr 05 2025