This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382831 #16 Apr 29 2025 13:27:31 %S A382831 2,10,964,1804,7820,48120,830817,4895208,11308160,162802560,394129476, %T A382831 3763612800,19823090472,1018716103620,9744542956800,3989325082624, %U A382831 329306801920000,2978224618328064,11804664377696256,128906665137012736 %N A382831 a(n) is the n-th n-almost-prime that is a partial sum of the sequence of n-almost-primes. %e A382831 The first three members of A086062 that are 3-almost-primes are 8 = 2^3, 20 = 2^2 * 5 = 8 + 12, and 964 = 2^2 * 241 = 8 + 12 + 18 + ... + 92, so a(3) = 964. %p A382831 f:= proc(n) uses priqueue; %p A382831 local pq,t,s,x,p,i,count; %p A382831 initialize(pq); %p A382831 insert([-2^n,2$n],pq); %p A382831 s:= 0; count:= 0: %p A382831 do %p A382831 t:= extract(pq); %p A382831 x:= -t[1]; %p A382831 s:= s + x; %p A382831 if numtheory:-bigomega(s) = n then count:= count+1; if count = n then return s fi fi; %p A382831 p:= nextprime(t[-1]); %p A382831 for i from n+1 to 2 by -1 while t[i] = t[-1] do %p A382831 insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]), p$(n+2-i)], pq) %p A382831 od; %p A382831 od %p A382831 end proc: %p A382831 map(f, [$1..20]); %Y A382831 Cf. A007504, A062198, A086062, A086046, A086047, A086052, A086059, A086061. %K A382831 nonn %O A382831 1,1 %A A382831 _Robert Israel_, Apr 28 2025