cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382833 Square array read by antidiagonals: T(n,k) is the number of distinct sum-of-powers vectors (Sum_{x in X} x^m, 0 <= m <= k) for subsets X of {0, ..., n-1}; n, k >= 0.

This page as a plain text file.
%I A382833 #4 Apr 12 2025 12:46:57
%S A382833 1,1,2,1,2,3,1,2,4,4,1,2,4,8,5,1,2,4,8,15,6,1,2,4,8,16,26,7,1,2,4,8,
%T A382833 16,32,42,8,1,2,4,8,16,32,64,64,9,1,2,4,8,16,32,64,126,93,10,1,2,4,8,
%U A382833 16,32,64,128,247,130,11,1,2,4,8,16,32,64,128,256,476,176,12
%N A382833 Square array read by antidiagonals: T(n,k) is the number of distinct sum-of-powers vectors (Sum_{x in X} x^m, 0 <= m <= k) for subsets X of {0, ..., n-1}; n, k >= 0.
%F A382833 T(n,k) <= 2^n with equality if and only if n < A382832(k).
%e A382833 Array begins:
%e A382833   n\k|  0   1     2     3     4
%e A382833   ---+-------------------------
%e A382833    0 |  1   1     1     1     1
%e A382833    1 |  2   2     2     2     2
%e A382833    2 |  3   4     4     4     4
%e A382833    3 |  4   8     8     8     8
%e A382833    4 |  5  15    16    16    16
%e A382833    5 |  6  26    32    32    32
%e A382833    6 |  7  42    64    64    64
%e A382833    7 |  8  64   126   128   128
%e A382833    8 |  9  93   247   256   256
%e A382833    9 | 10 130   476   512   512
%e A382833   10 | 11 176   908  1024  1024
%e A382833   11 | 12 232  1682  2048  2048
%e A382833   12 | 13 299  3067  4080  4096
%e A382833   13 | 14 378  5364  8128  8192
%e A382833   14 | 15 470  9132 16128 16384
%e A382833   15 | 16 576 14948 31992 32768
%e A382833   16 | 17 697 23635 63163 65520
%e A382833 For n = 4, k = 1, there is only one pair of subsets of {0, 1, 2, 3} for which the two subsets have the same number of elements (sum of 0th powers) and the same sum (sum of 1st powers), namely {0, 3}, {1, 2}. Hence, T(4,1) = 2^4-1 = 15.
%Y A382833 Cf. A000027 (column k=0), A000125 (column k=1), A382383, A382832.
%K A382833 nonn,tabl
%O A382833 0,3
%A A382833 _Pontus von Brömssen_, Apr 10 2025