This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382833 #4 Apr 12 2025 12:46:57 %S A382833 1,1,2,1,2,3,1,2,4,4,1,2,4,8,5,1,2,4,8,15,6,1,2,4,8,16,26,7,1,2,4,8, %T A382833 16,32,42,8,1,2,4,8,16,32,64,64,9,1,2,4,8,16,32,64,126,93,10,1,2,4,8, %U A382833 16,32,64,128,247,130,11,1,2,4,8,16,32,64,128,256,476,176,12 %N A382833 Square array read by antidiagonals: T(n,k) is the number of distinct sum-of-powers vectors (Sum_{x in X} x^m, 0 <= m <= k) for subsets X of {0, ..., n-1}; n, k >= 0. %F A382833 T(n,k) <= 2^n with equality if and only if n < A382832(k). %e A382833 Array begins: %e A382833 n\k| 0 1 2 3 4 %e A382833 ---+------------------------- %e A382833 0 | 1 1 1 1 1 %e A382833 1 | 2 2 2 2 2 %e A382833 2 | 3 4 4 4 4 %e A382833 3 | 4 8 8 8 8 %e A382833 4 | 5 15 16 16 16 %e A382833 5 | 6 26 32 32 32 %e A382833 6 | 7 42 64 64 64 %e A382833 7 | 8 64 126 128 128 %e A382833 8 | 9 93 247 256 256 %e A382833 9 | 10 130 476 512 512 %e A382833 10 | 11 176 908 1024 1024 %e A382833 11 | 12 232 1682 2048 2048 %e A382833 12 | 13 299 3067 4080 4096 %e A382833 13 | 14 378 5364 8128 8192 %e A382833 14 | 15 470 9132 16128 16384 %e A382833 15 | 16 576 14948 31992 32768 %e A382833 16 | 17 697 23635 63163 65520 %e A382833 For n = 4, k = 1, there is only one pair of subsets of {0, 1, 2, 3} for which the two subsets have the same number of elements (sum of 0th powers) and the same sum (sum of 1st powers), namely {0, 3}, {1, 2}. Hence, T(4,1) = 2^4-1 = 15. %Y A382833 Cf. A000027 (column k=0), A000125 (column k=1), A382383, A382832. %K A382833 nonn,tabl %O A382833 0,3 %A A382833 _Pontus von Brömssen_, Apr 10 2025