cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382845 Sum of the legs of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000045(n) and its long leg and hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A382845 #11 Apr 13 2025 16:11:56
%S A382845 -1,1,1,7,17,49,127,337,881,2311,6049,15841,41471,108577,284257,
%T A382845 744199,1948337,5100817,13354111,34961521,91530449,239629831,
%U A382845 627359041,1642447297,4299982847,11257501249,29472520897,77160061447,202007663441,528862928881,1384581123199
%N A382845 Sum of the legs of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000045(n) and its long leg and hypotenuse are consecutive natural numbers.
%D A382845 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.
%H A382845 Miguel-Ángel Pérez García-Ortega, <a href="/A382845/a382845.pdf">El Libro de las Ternas Pitagóricas</a>
%F A382845 a(n) = A382843(n,1) + A382843(n,2).
%F A382845 a(n) = 2*Fibonacci(n)^2 - 1.
%e A382845 For n=4, the short leg is A382843(2,1) = 3 and the long leg is A382843(2,2) = 4  so the sum of the legs is then a(4) = 3 + 4 = 7.
%t A382845 a=Table[Fibonacci[n],{n,0,30}];Apply[Join,Map[{2#^2-1}&,a]]
%Y A382845 Cf. A000045, A382843, A382844, A095122, A007598, A080097.
%K A382845 sign,easy
%O A382845 0,4
%A A382845 _Miguel-Ángel Pérez García-Ortega_, Apr 06 2025