This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382851 #12 May 02 2025 23:59:41 %S A382851 2,3,4,10,15,21,56,84,210,330,495,1287,2002,5005,8008,19448,31824, %T A382851 50388,125970,203490,497420,817190,1961256,3268760,5311735,13037895, %U A382851 21474180,51895935,86493225,206253075,347373600,818809200,1391975640,3247943160,5567902560 %N A382851 a(n) = least number in row n of Pascal's triangle that exceeds every number in row n-1. %e A382851 Rows 0 to 5 of Pascal's triangle: %e A382851 1 %e A382851 1 1 %e A382851 1 2 1 %e A382851 1 3 3 1 %e A382851 1 4 6 4 1 %e A382851 1 5 10 10 5 1, %e A382851 10 is the least number in row 5 that exceeds max{1,4,6}, so a(5)=10 %t A382851 z = 40; c[n_, k_] := Binomial[n, k]; %t A382851 t[n_] := Table[c[n, k], {k, 0, n}]; %t A382851 a[n_] := Select[Range[z], c[n, #] > c[n - 1, Floor[(n - 1)/2]] &, 1]; %t A382851 Flatten[Table[a[n], {n, 1, 3 z}]] (* A382850 *) %t A382851 Flatten[Table[c[n, a[n]], {n, 1, z}]] (* A382851 *) %t A382851 a[n_] := Block[{b, k = 1, m = Binomial[n -1, Floor[(n -1)/2]]}, While[b = Binomial[n, k]; b < m, k++]; b]; Array[a, 35, 2] (* _Robert G. Wilson v_, May 02 2025 *) %o A382851 (PARI) row(n) = vector(n+1, k, binomial(n,k-1)); %o A382851 a(n) = my(val = vecmax(row(n-1)), w = row(n)); for (i=1, #w, if (w[i] > val, return(w[i]));); \\ _Michel Marcus_, Apr 13 2025 %Y A382851 Cf. A007318, A382850. %K A382851 nonn %O A382851 2,1 %A A382851 _Clark Kimberling_, Apr 13 2025