A384020 Numbers k > 0 such that sigma(A018804(k)) = k*tau(A018804(k)) where sigma denotes the sum of divisors (A000203) and tau denotes the number of divisors (A000005).
1, 2, 3, 6, 7, 10, 14, 19, 21, 30, 31, 37, 38, 39, 42, 57, 62, 70, 74, 78, 79, 93, 97, 111, 114, 133, 139, 157, 158, 186, 190, 194, 199, 210, 211, 217, 222, 229, 237, 259, 266, 271, 273, 278, 291, 307, 310, 314, 331, 337, 367, 370, 379, 390, 398, 399, 410
Offset: 1
Keywords
Examples
For k = 6, a(6) = A000203(A018804(6)) = 6*A000005(A018804(6)).
Programs
-
Mathematica
f[p_, e_] := (e*(p - 1)/p + 1)*p^e; pil[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[500], Divide @@ DivisorSigma[{1, 0}, pil[#]] == # &] (* Amiram Eldar, May 17 2025 *)
Comments