This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382878 #6 Apr 10 2025 23:17:13 %S A382878 1,6,24,30,36,180,210,360,420,720,1080,1260,1800,2160,2310,2520,3600, %T A382878 4620,5040,5400,6300,7560,10800,12600,13860,15120,21600,25200,25920, %U A382878 27000,27720,30030,32400,37800,44100,45360,46656,50400,54000,55440,60060,60480,64800 %N A382878 Set of positions of first appearances in A382857 (permutations of prime indices with equal run-lengths). %C A382878 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %e A382878 The permutations for n = 6, 720, 36, 25920, 30: %e A382878 (1,2) (1,2,1,2,1,3,1) (1,1,2,2) (1,2,1,2,1,2,1,2,1,3,1) (1,2,3) %e A382878 (2,1) (1,2,1,3,1,2,1) (1,2,1,2) (1,2,1,2,1,2,1,3,1,2,1) (1,3,2) %e A382878 (1,3,1,2,1,2,1) (2,1,2,1) (1,2,1,2,1,3,1,2,1,2,1) (2,1,3) %e A382878 (2,2,1,1) (1,2,1,3,1,2,1,2,1,2,1) (2,3,1) %e A382878 (1,3,1,2,1,2,1,2,1,2,1) (3,1,2) %e A382878 (3,2,1) %e A382878 The terms together with their prime indices begin: %e A382878 1: {} %e A382878 6: {1,2} %e A382878 24: {1,1,1,2} %e A382878 30: {1,2,3} %e A382878 36: {1,1,2,2} %e A382878 180: {1,1,2,2,3} %e A382878 210: {1,2,3,4} %e A382878 360: {1,1,1,2,2,3} %e A382878 420: {1,1,2,3,4} %e A382878 720: {1,1,1,1,2,2,3} %e A382878 1080: {1,1,1,2,2,2,3} %e A382878 1260: {1,1,2,2,3,4} %e A382878 1800: {1,1,1,2,2,3,3} %e A382878 2160: {1,1,1,1,2,2,2,3} %e A382878 2310: {1,2,3,4,5} %e A382878 2520: {1,1,1,2,2,3,4} %e A382878 3600: {1,1,1,1,2,2,3,3} %t A382878 y=Table[Length[Select[Permutations[Join@@ConstantArray@@@FactorInteger[n]],SameQ@@Length/@Split[#]&]],{n,0,1000}]; %t A382878 fip[y_]:=Select[Range[Length[y]],!MemberQ[Take[y,#-1],y[[#]]]&]; %t A382878 fip[Rest[y]] %Y A382878 Positions of first appearances in A382857 (zeros A382879), by signature A382858. %Y A382878 For distinct run-lengths we have A382772, firsts of A382771 (by signature A382773). %Y A382878 A140690 lists numbers whose binary expansion has equal run-lengths, distinct A044813. %Y A382878 A056239 adds up prime indices, row sums of A112798. %Y A382878 A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432. %Y A382878 A329738 counts compositions with equal run-lengths, ranks A353744. %Y A382878 A329739 counts compositions with distinct run-lengths, ranks A351596. %Y A382878 A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433. %Y A382878 Cf. A000720, A001221, A001222, A003242, A048767, A098859, A130091, A238130, A305936, A351013, A351202, A382876. %K A382878 nonn %O A382878 1,2 %A A382878 _Gus Wiseman_, Apr 09 2025