This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A382879 #8 Apr 21 2025 10:47:08 %S A382879 24,40,48,54,56,80,88,96,104,112,135,136,152,160,162,176,184,189,192, %T A382879 208,224,232,240,248,250,272,288,296,297,304,320,328,336,344,351,352, %U A382879 368,375,376,384,405,416,424,448,459,464,472,480,486,488,496,513,528,536 %N A382879 Positions of 0 in A382857 (permutations of prime indices with equal run-lengths). %C A382879 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. %e A382879 The terms together with their prime indices begin: %e A382879 24: {1,1,1,2} %e A382879 40: {1,1,1,3} %e A382879 48: {1,1,1,1,2} %e A382879 54: {1,2,2,2} %e A382879 56: {1,1,1,4} %e A382879 80: {1,1,1,1,3} %e A382879 88: {1,1,1,5} %e A382879 96: {1,1,1,1,1,2} %e A382879 104: {1,1,1,6} %e A382879 112: {1,1,1,1,4} %e A382879 135: {2,2,2,3} %e A382879 136: {1,1,1,7} %e A382879 152: {1,1,1,8} %e A382879 160: {1,1,1,1,1,3} %t A382879 Select[Range[100], Select[Permutations[Join@@ConstantArray@@@FactorInteger[#]], SameQ@@Length/@Split[#]&]=={}&] %Y A382879 For distinct instead of equal the complement is A351294, counted by A239455. %Y A382879 For distinct instead of equal we have A351295, counted by A351293. %Y A382879 For run-sums instead of run-lengths we have A383100, zeros of A382877, distinct A382876. %Y A382879 Positions of 0 in A382857 (firsts A382878), by signature A382858 (distinct A382773). %Y A382879 For prime signature instead of prime indices we have A382914. %Y A382879 Partitions of this type are counted by A382915. %Y A382879 The complement is counted by A383013. %Y A382879 A005811 counts runs in binary expansion. %Y A382879 A056239 adds up prime indices, row sums of A112798. %Y A382879 A297770 counts distinct runs in binary expansion. %Y A382879 A164707 lists numbers whose binary form has equal runs of ones, distinct A328592. %Y A382879 A304442 counts partitions with equal run-sums, ranks A353833. %Y A382879 A329739 counts compositions with distinct run-lengths, ranks A351290. %Y A382879 A353744 ranks compositions with equal run-lengths, distinct A351596 (complement A351291). %Y A382879 Cf. A000720, A000961, A001221, A001222, A003242, A008480, A047966, A130091, A238279, A351201. %K A382879 nonn %O A382879 1,1 %A A382879 _Gus Wiseman_, Apr 09 2025